0000004912 00000 n For these materials, it is usually due to uniquely oriented, hinged molecular bonds. Poisson's ratios and Young's moduli were measured for five sugar pine (Pinus lambertiana Douglas) boards in a plane delineated by the grain direction and a tangent to the growth increments. >!��T�؆�Lѝ ���D�;��D�L�D"�g�5�g>pdbGS����1�� ��AMN�� �/�GR*�d�.�V�U�gѕ���A�m���(��:�P�]1���&acT Myy����P�m����b��5�y�ӝ�Ss��/��U��٤8�2AU&��/�-(18��y2.:�ا��e���֠�~�'U(�+�WS��;�&@1dp����!.@С�6�ˎL��5�4@S0�J�D��֖�B^! Measurement of the Poisson’s ratio by the axial tension test. The ratio of the transverse to axial strain is called Poisson’s ratio. Poisson's Ratios for Common Materials. As with the example of a rubber band, when we stretch the length ( Axial), the cross-sectional width gets reduced ( Transverse) and vice versa. 0000007800 00000 n ?��X��V/����m#�C{�t5Xp5�m�Z�]]�u������g!%{I���i1�;�6�%�\�vbGa���j7������k*�m�gJ��_�R�H��k����7����خ>�� ����rEU�Bsix<91G�7�� ���� � iq��TS�|2�ㄉ���ĩOU�NT�3�4w�� �a�a;���h�o���;��[����$ځ;��@5C�;�uj&q��ˆ����QTy!f�� ?�|j@S2s���c`t�h�p�{�f(�:�-�e���ZK�͛�.�ߗ�G���i��������p��[�ۦ.�{�w�Ĺ;�3�$ۊwJ�^u{��J��{�Ι��6��ѩ�lZ�(z��(����Z�(��O���k>�=Y�����@~��R�v�d��ϩ����Q���b�K��,�/Q�y[��Nn��~�2�;��.�VF8�zd0�qL�_������(g��F����"����'M�J"���%?�ٽ3�x�P�{�A� ��\��'+�nvyK� �]•��K��ek��ޠJ[~4෭n�{b{+�&�,y���tI �*���X҉4�tW?n�N� G����֬(U�wX�KY�Sv���. hello everybody I am looking for a poisson ratio of the following type of wood %PDF-1.4 %���� Values for wood adjusted to 12% moisture content may be assumed to be approximately of the same magnitude. to-weight ratio of a cellular composite such as wood. The tension tests were conducted on fiveplywood of lauan (Shorea sp.) With Poisson's ratio for aluminum 0.334 - the contraction can be calculated as. A. Through analysis of variance and multiple comparisons, it was found that when the moisture content is below the respective fiber saturation point Poisson’s ratio decreases with … �}�s����1�r=�pe����E�śQZxP։�#[�) ە���b�$W�p+����b�e5�Dy` 4�� endstream endobj 299 0 obj 986 endobj 279 0 obj << /Type /Page /Parent 269 0 R /Resources 280 0 R /Contents 290 0 R /MediaBox [ 0 0 612 792 ] /CropBox [ 0 0 612 792 ] /Rotate 0 >> endobj 280 0 obj << /ProcSet [ /PDF /Text ] /ColorSpace << /DefaultRGB 288 0 R >> /Font << /F6 284 0 R /F7 293 0 R /F10 281 0 R /F13 287 0 R /F14 286 0 R >> >> endobj 281 0 obj << /Type /Font /Subtype /Type1 /Name /F10 /FirstChar 32 /LastChar 255 /Widths [ 278 333 474 556 556 889 722 238 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 333 333 584 584 584 611 975 722 722 722 722 667 611 778 722 278 556 722 611 833 722 778 667 778 722 667 611 722 667 944 667 667 611 333 278 333 584 556 333 556 611 556 611 556 333 611 611 278 278 556 278 889 611 611 611 611 389 556 333 611 556 778 556 556 500 389 280 389 584 278 722 722 722 667 722 778 722 556 556 556 556 556 556 556 556 556 556 556 278 278 278 278 611 611 611 611 611 611 611 611 611 611 556 400 556 556 556 350 556 611 737 737 1000 333 333 549 1000 778 713 549 549 549 556 576 494 713 823 549 274 370 365 768 889 611 611 333 584 549 556 549 612 556 556 1000 278 722 722 778 1000 944 556 1000 500 500 278 278 549 494 556 667 167 556 333 333 611 611 556 278 278 500 1000 722 667 722 667 667 278 278 278 278 778 778 0 778 722 722 722 278 333 333 333 333 333 333 333 333 333 333 ] /Encoding /MacRomanEncoding /BaseFont /DDBOGA+Arial-BoldMT /FontDescriptor 285 0 R >> endobj 282 0 obj << /Type /Encoding /Differences [ 0 /NUL /SOH /STX /ETX /EOT /ENQ /ACK /BEL /BS /HT /LF /VT /FF /CR /SO /SI /DLE /DC1 /DC2 /DC3 /DC4 /NAK /SYN /ETB /CAN /EM /SUB /ESC /FS /GS /RS /US 39 /quotesingle 96 /grave 127 /DEL /Adieresis /Aring /Ccedilla /Eacute /Ntilde /Odieresis /Udieresis /aacute /agrave /acircumflex /adieresis /atilde /aring /ccedilla /eacute /egrave /ecircumflex /edieresis /iacute /igrave /icircumflex /idieresis /ntilde /oacute /ograve /ocircumflex /odieresis /otilde /uacute /ugrave /ucircumflex /udieresis /dagger /degree 164 /section /bullet /paragraph /germandbls /registered /copyright /trademark /acute /dieresis /notequal /AE /Oslash /infinity /plusminus /lessequal /greaterequal /yen /mu /partialdiff /summation /product /pi /integral /ordfeminine /ordmasculine /Omega /ae /oslash /questiondown /exclamdown /logicalnot /radical /florin /approxequal /Delta /guillemotleft /guillemotright /ellipsis /nbspace /Agrave /Atilde /Otilde /OE /oe /endash /emdash /quotedblleft /quotedblright /quoteleft /quoteright /divide /lozenge /ydieresis /Ydieresis /fraction /currency /guilsinglleft /guilsinglright /fi /fl /daggerdbl /periodcentered /quotesinglbase /quotedblbase /perthousand /Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave /Iacute /Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex /apple /Ograve /Uacute /Ucircumflex /Ugrave 246 /circumflex /tilde /macron /breve /dotaccent /ring /cedilla /hungarumlaut /ogonek /caron ] >> endobj 283 0 obj << /Type /FontDescriptor /Ascent 1421 /CapHeight 1355 /Descent -441 /Flags 34 /FontBBox [ -167 -216 1009 913 ] /FontName /TimesNewRomanPSMT /ItalicAngle 0 /StemV 0 /FontFile 295 0 R /XHeight 915 >> endobj 284 0 obj << /Type /Font /Subtype /Type1 /FontDescriptor 283 0 R /FirstChar 32 /LastChar 255 /Widths [ 250 333 408 500 500 833 778 180 333 333 500 564 250 333 250 278 500 500 500 500 500 500 500 500 500 500 278 278 564 564 564 444 921 722 667 667 722 611 556 722 722 333 389 722 611 889 722 722 556 722 667 556 611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444 500 444 333 500 500 278 278 500 278 778 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 250 722 722 667 611 722 722 722 444 444 444 444 444 444 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 500 500 500 500 400 500 500 500 350 453 500 760 760 980 333 333 549 889 722 713 549 549 549 500 576 494 713 823 549 274 276 310 768 667 500 444 333 564 549 500 549 612 500 500 1000 250 722 722 722 889 722 500 1000 444 444 333 333 549 494 500 722 167 500 333 333 556 556 500 250 333 444 1000 722 611 722 611 611 333 333 333 333 722 722 0 722 722 722 722 278 333 333 333 333 333 333 333 333 333 333 ] /Encoding /MacRomanEncoding /BaseFont /TimesNewRomanPSMT >> endobj 285 0 obj << /Type /FontDescriptor /Ascent 1466 /CapHeight 1466 /Descent -431 /Flags 32 /FontBBox [ -167 -210 1000 913 ] /FontName /DDBOGA+Arial-BoldMT /ItalicAngle 0 /StemV 0 /FontFile 296 0 R /CharSet (/i/n/r/s/N/h/C/c/u/space/p/t/e/f/W/O/o/a/d) /XHeight 1062 >> endobj 286 0 obj << /Type /Font /Subtype /Type1 /Name /F14 /Encoding 282 0 R /BaseFont /Helvetica-Bold >> endobj 287 0 obj << /Type /Font /Subtype /Type1 /Name /F13 /FirstChar 0 /LastChar 255 /Widths [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220 280 220 680 440 680 780 160 260 220 420 520 220 280 220 340 440 440 440 440 440 440 440 440 440 440 260 240 520 520 520 380 700 620 600 520 700 620 580 620 680 380 400 660 580 840 700 600 540 600 600 460 500 740 640 880 560 560 620 240 480 320 520 500 220 420 420 340 440 340 320 400 440 240 220 440 240 620 460 400 440 400 300 320 320 460 440 680 420 400 440 240 520 240 520 0 620 620 520 620 700 600 740 420 420 420 420 420 420 340 340 340 340 340 240 240 240 240 460 400 400 400 400 400 460 460 460 460 460 400 440 480 420 600 500 420 740 740 1000 300 360 549 740 660 713 549 549 549 720 576 494 713 823 549 274 260 260 768 540 440 400 280 600 549 400 549 612 340 380 1000 0 620 620 600 820 560 500 1000 340 360 240 240 549 494 400 560 60 600 240 260 520 520 480 220 180 280 960 620 620 620 620 620 380 380 380 380 600 600 790 600 740 740 740 240 340 440 440 440 220 300 300 400 280 340 ] /Encoding 282 0 R /BaseFont /DDBHLA+ZapfChancery-MediumItalic /FontDescriptor 289 0 R >> endobj 288 0 obj [ /CalRGB << /WhitePoint [ 0.9505 1 1.089 ] /Gamma [ 1.8 1.8 1.8 ] /Matrix [ 0.44971 0.2446 0.02521 0.3163 0.672 0.1412 0.18449 0.0833 0.9227 ] >> ] endobj 289 0 obj << /Type /FontDescriptor /Ascent 714 /CapHeight 708 /Descent -314 /Flags 32882 /FontBBox [ -181 -314 1065 831 ] /FontName /DDBHLA+ZapfChancery-MediumItalic /ItalicAngle -14 /StemV 70 /FontFile 294 0 R /CharSet (/r/h/C/space/p/t/e/four/a) /XHeight 438 >> endobj 290 0 obj << /Filter /FlateDecode /Length 291 0 R >> stream The knowledge of exact values is vital for the optimization of the material's use and for the reliability of simulations via finite elements. @inproceedings{Taeko2009PoissonsRO, title={Poisson's Ratio of Wood-Based Panels and Poisson's Effect of Hygroscopic Linear Expansion under a Uniaxially Dimensional Restraint}, author={Taeko and Sasaki}, year={2009} } Taeko, Sasaki Published 2009 When wood based panels are … This study investigates the effect of a wide range of moisture contents (0–177 %) on the Poisson’s ratio of wood taken from Japanese cypress and magnolia by conducting longitudinal compression tests. It also relates a strain that is tensile to a strain that is compressive.Ê ���҈�,xlz15M�*OW�����Y��[���"�*�z�&.�G��.�. Poissons Ratio, µ TL, 12% Moisture Content; Poissons Ratio, µ RL, 12% Moisture Content; Poissons Ratio, µ LR, 12% Moisture Content; Poissons Ratio, µ TR, 12% Moisture Content; Poissons Ratio, µ LT, 12% Moisture Content; Poissons Ratio, µ RT, 12% Moisture Content; Machinability, Good Relative to Other Wood Poisson's ratio of these panels ranged 0.14 to 0.28 and had a tendency to be greater as element size became smaller and elements were more randomly oriented. 0000006517 00000 n Poisson’s Ratio When a member is loaded axially, the deformation perpen-dicular to the direction of the load is proportional to the deformation parallel to the direction of the load. [ 2, 13] . with various widths, and Young's modulus and Poisson's ratios of the specimens were measured. 0000003415 00000 n Only few studies have dealt so far with the investigation of the Poisson’s ratio of spruce wood (Picea abies (L.) Karst.) One test specimen per board was loaded in a direction parallel to the grain; a second one was loaded perpendicular to the grain in the tangential direction. 0000000887 00000 n 0000012272 00000 n The Poisson’s ratios are denoted by µLR, µRL, µLT, µTL, µRT, and µTR. They show average values of the Young's modulus (modulus of elasticity) for the compression parallel to the fibers for various wood species, and average Poisson's ratio values ​​for several high and low density wood classes. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. dr = - 0.334 (100 10-3 m) (5 10-3 m) / (10 m) = 1.7 10-5 m = 0.017 mm . trailer << /Size 300 /Info 267 0 R /Root 278 0 R /Prev 1258459 /ID[] >> startxref 0 %%EOF 278 0 obj << /Type /Catalog /Pages 266 0 R /Metadata 276 0 R >> endobj 298 0 obj << /S 1129 /Filter /FlateDecode /Length 299 0 R >> stream In diverse CAE systems, high-fidelity models with a full material description, including elastic constants such as Poisson’s ratios, are needed. 1 Introduction. Yet, each individual wood cell is even more structurally advanced because it is actually a multilayered, filament-reinforced, closed-end tube rather than just a homogeneous, nonreinforced straw (Figure 3-2). Density can vary by 20% or more. Average values of elastic moduli along the tangential (E T) and radial (E R) axes of wood for samples from a few species are given in the following table as ratios with elastic moduli along the longitudinal (E L) axis. Static Measurement of Poisson’s Ratio for Timber. Elastic moduli and damping characterization are also employed in the engineering of new variations of these materials, such as panels and wooden boards. Poissons Ratio, µ TL, 12% Moisture Content; Poissons Ratio, µ RL, 12% Moisture Content; Poissons Ratio, µ TR, 12% Moisture Content; Poissons Ratio, µ LR, 12% Moisture Content; Poissons Ratio, µ LT, 12% Moisture Content; Poissons Ratio, µ RT, 12% Moisture Content; Machinability, Medium Relative to Other Wood; Shear Strength, Parallel to Grain* Poisson’s Ratio When a member is loaded axially, the deformation perpen-dicular to the direction of the load is proportional to the deformation parallel to the direction of the load. Technical Review ITC-ME/ATCP Elastic moduli: Overview and characterization methods, Informativo Técnico-Científico ITC-05/ATCP: Caracterização dos módulos elásticos de madeiras utilizando a Técnica de Excitação por Impulso (TEI), Values for reference only. 0000007970 00000 n The first letter of the subscript refers to direction of The elastic moduli (Young's Modulus, Shear modulus and Poisson's ratio) and damping of composites can be accurately characterized by the non-destructive Sonelastic® Systems testing at room temperature and as a function of temperature and/or time. For example, lumber installed green in timber bridges may remain at, or near, the fiber Rio de Janeiro, 1997. Malabar (EUA), Krieger Publishing Company, 1993. Poisson's ratio is dimensionless and ranges between 0.1 and 0.45. T he Young s modulus and Poisson s rat io are 45 98 GPa and 0 … Poisson's ratio - When a material is stretched in one direction it tends to get thinner in the other two directions Poisson's Ratio for Metals - Some metals and their Poisson's Ratio Properties of Ice - Modulus, tensile strength, compressive strength and fracture of toughness Available Properties; Density, 15% Moisture Content. The ratio of this change is called Poisson’s ratio. MACROSTRUCTURE The cross section of a tree can be divided into three basic parts: bark, Calculated values of Young s modulus and Poisson s rat io are listed in Table 4, and the other values are from Refs. Poisson’s Ratio. The tables below show the values of Young's modulus (modulus of elasticity) and Poisson's ratio at room temperature for woods and composite materials used in engineering. Strain was measured using a strain gauge and an extensometer, and deformation of specimens was observed using a digital image correlation (DIC) technique. It is an awesome 500 pages of info. Typical Poisson's Ratios for some common materials are indicated below. The first letter of the subscript refers to direction Poisson's ratio is 0.3 for metals because the metals begin to get thinner the more they are stretched. In order for these bonds to stretch in the longitudinal direction, the hinges must ‘open’ in the transverse direction, effectively exhibiting a positive strain. For example, wood is a cellular composite of biological origin, based on lignin and cellulose which are natural macromolecules [1]. Explanation of Tables and Figures In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: = = / / = where = / = shear stress is the force which acts is the area on which the force acts = shear strain. or wood in general. Low Poisson's ratio, such as 0.1–0.25, means rocks fracture easier whereas high Poisson's ratio, such as 0.35–0.45, indicates the rocks are harder to fracture. For the purpose of obtaining shear modulus, axial, transverse and 45 degree off-axis compression test for wood specimen were performed to measure Young's modulus and Poisson's ratio. it would increase the cross sectional area). Furthermore, Poisson's ratios by a standard test were compared among panels with different element size, namely, plywood, oriented strand board, particleboard and MDF. Typical Poisson's Ratios of Polymers at Room Temperature; Polymer : Value: Poly(α-methylstyrene), PAMS: 0.32: Poly(p-tertiary-butylstyrene) 0.33 When subjected to positive strain in a longitudinal axis, the transverse strain in the material will actually be positive (i.e. 0000008254 00000 n The Poisson’s ratios are denoted by μLR, μRL, μLT, μTL, μRT, and μTR. Historically we have used 0.3 (for Poisson's ratio) but it has always been used with/for APA marine grade (hardwood) plywood - without apparent problem. )�x�T����P�B J��Po)��fR� Q��`a%��P��X ė��̅��+��E�W��b��� � �,���α�1�3D��0Lad�Rg`dx���S��&�!�;�-��C��"�/�2�e����uL)f=�������a I have today run a test - which confirms that displacement varies directly with Poisson's ratio (between 0.15 and 0.3). The properties are expressed in average values that ​​may vary significantly depending on the processing and quality of the material. the proportional limit of the wood. 0000069767 00000 n The tension tests were conducted on five-plywood of lauan (Shorea sp.) Poisson's ratio of plywood measured by tension test Poisson's ratio of plywood measured by tension test Yoshihara, Hiroshi 2009-09-01 00:00:00 Abstract In this research, Poisson's ratio of plywood as obtained by a tension test was examined by varying the width of the specimen. Information required like, Elastic Modulus , Poisson’s Ratio , ... Look up the Wood Handbook: Wood as an Engineering Material by the Forest Product Lab. 0000006232 00000 n Taking the ratio of real and imaginary parts, the This can also be done in a structured way and lead to new aspects in material design as for mechanical metamaterials. with various widths, and Young's moduli … This section of the website is a summary of an extract from the Technical Review ITC-ME/ATCP Elastic moduli: Overview and characterization methods, and Informativo Técnico-Científico ITC-05/ATCP: Caracterização dos módulos elásticos de madeiras utilizando a Técnica de Excitação por Impulso (TEI) - (*ptBr language). 0000015493 00000 n ,\s�6���+{1s)���3C�҅�,~9�7�q�,�a⚼�C�fC*��18����%�^�"˒#zØ�wB���p��rfALB���8^ވ`a��QrrS�ƍ��b�',��]r�����D��&P"`��h�$cc�0[�� �8p��HT%`#;09�P��eҀ��\���`إ��"Pg���U0 poisson ratio of wood: poisson’s effect: limiting value of poisson ratio: range of poisson ratio: poisson’s ratio units: value of poisson ratio: rubber poisson ratio: the poisson’s ratio of a material is 0.5: poisson constant: poisonous ratio: unit of poisson ratio: the poisson’s ratio of a material is 0.5 of a force is applied: formula of poisson ratio 0000001961 00000 n For most common materials the Poisson's ratio is in the range 0 - 0.5. In these final tests, measurements for Young' s modulus were made on one pair of faces, and one Poisson' s ratio was obtained. 0000002306 00000 n Poisson's ratio (υ) is defined as the negative of the ratio of transverse strain to axial strain when an isotropic material is subjected to uniaxial stress (Christensen, 1996; Gercek, 2007; Poisson, 1829; Timoshenko & Goodier, 1970; Wang & Ji, 2009).As the Lamé coefficient cannot be negative for a stable elastic material, υ can range from −1.0 to 0.5 (e.g., Ji et al., 2010). Please note that Poisson's ratio changes from layer to layer. Sonelastic® Systems are modular and customizable instruments for fast, precise and non-destructive elastic moduli and damping characterization of materials using the Impulse Excitation Technique. Modulus of elasticity E, Poisson's ratio U, Coefficient of thermal expansion A, Weight per unit volume of the wood and Normalweight f''c). Finite element calculations were independently conducted. Z� NN!�$��1�vX�As � �M����p?g�o�pP��gVp8Y�r��=���� ��Ü� For exact values, characterize the material using Sonelastic. However, although there have been numerous studies into the dependence of Young’s modulus and shear modulus on the MC of wood and wood-based materials, the relation between MC and Poisson’s ratio is still poorly 01:16 Jun-30-1999 https://www.ndt.net/forum/thread.php?msgID=925#925 poisson ratio of wood. Poisson’s Ratio is the negative of the ratio of lateral strain ( Transverse) to the linear strain ( Axial). Poisson's ratio of plywood as obtained by a tension test was examined by varying the width of the specimen. 1 Introduction In the United States, lumber is used with a wide range of moisture content (MC) levels. 0000002141 00000 n !%_-��Y~՜�Xw����C)M75o�9����~����HߕΔXԻ���0�%�:�%KN���aoM�Ue %�Uf5�/)ޑ�xvl(,�J�2ZR�S+iy�RWA}�Q����V��}K2�4� Projeto de estruturas de madeira, NBR 7190. 0000010898 00000 n �0�ٛ߾����1��;\:��p�ٗqJ���&W�*���00�i-��J�8�ٛ�}������������X�ÀD,�~���9K������m�48����|మg�]��G�N�;u�0��+�ӫ²"v�Nj�ON&(��*/:>Y����I_���4&�KV:�F�*>=�Sy�6�^r9q^�,�aA�)���6�7�39�h/>yZ#ȑk_�r�7S�8��/�n)���%���1x��CV6�rPXy�AN'�V�F�@����~1�\�)Z%��lWI��e�X�T�w^�,��u���Ɯ�i3�t������^�$��Y�ye�p+�2��V�c��A�|�����ֱ�9����a4�VA+�����[S���\�Z�Vs�x�r̽������) The exact values can be measured with the Sonelastic® Systems of non-destructive testing, both, at room temperature or as a function of temperature and/or time. This white paper presents the theory and proposal of a methodology for the non-destructive elastic moduli characterization of woods and wood products using the Impulse Excitation Technique. 107 p. BODIG, J., JAYNE, B. Some materials known as auxetic materials display a negative Poisson's ratio. ;� .�oj��,kjIe�zL�SvvD��z���"o��6GA`�p�&Y��.�F�2�CS?a�:�p���β�it>����ʨ�U�xK�S�����QCq� ��/��/o�R�#���ų��6�9�e}��;�� ;Jk�!�z\�h^=S�� gX�Z�� displacement is calculated). 0000011157 00000 n Wood: Sample orientation: Poisson's ratio involved: Poisson's ratio for low-density wood: Poisson's ratio for high-density wood: Longitudinal: ν_LT e ν_LR: 0.40 ± 0.05: 0.43 ± 0.07: Radial: ν_RT e ν_RL: 0.25 ± 0.25: 0.35 ± 0.30: Tangential: ν_TR e ν_TL: 0.20 ± 0.15: 0.18 ± 0.15 H�}W�r�:���)��Nj��N��ek�}�� Q�Ą�� ����4 n=��%A���ݧ��X�nc����\F/�E�)۔��6 ��Cf��C����u�1�����X������\g����4����vV�:Xx�N�4r��V��{� L:�='�c�����ks��}�ƍR��+.���9�$����ď�TY�"� ��N���R��.OF������:|~�$~��A!F������x��o�~w�V4����4R��c�Y���T����|g'ʽ5M�� �5��wbw=�ֽ���3�?E�)�^�a��?Y?�/"�Z�G^�/���>��ͅd���s�%v]�~n>Zk'5.��:aQ�D^�‾������?�;�E��\�6��Q]���i�b�n���yū��U���������X�R&�k�k��,L�O:8��Ŋ���U+)��'��5���oM{�[x�g�+o�F(��,cc�lʱ�{e�#I|��*t7�-�'AӲ�B�̈́}#��׻��T����}��o��#���u.e]�^$�o�zI*4RAra�. H�b```�rV�cB cg`a�h8$Т��#��:�%� 0000006630 00000 n I am looking for the material of properties of balsa wood in term of isotropic property data, weight and mass and general data (i.e. 0000066147 00000 n 277 0 obj << /Linearized 1 /O 279 /H [ 887 1096 ] /L 1264129 /E 71262 /N 46 /T 1258470 >> endobj xref 277 23 0000000016 00000 n 0000000811 00000 n